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Ising Models, Julia Sets, and Similarity 
Maximal Entropy Measures 

Y u t a k a  l sh i i  1 

Received July 28 1994; final June 28, 1994 

of the 

We study the phase transition of lsing models on diamondlike hierarchical 
lattices. Following an idea of Lee and Yang, one can make an analytic continua- 
tion of free energy of this model to the complex temperature plane. It is known 
that the Migdal-Kadanoff  renormalization group of this model is a rational 
endomorphism (denoted by f )  of t~ and that the singularities of the free energy 
lie on the Julia set J(f). The aim of this paper is to prove that the free energy 
can be represented as the logarithmic potential of the maximal entropy measure 
on J(f).  Moreover, using this representation, we can show a close relationship 
between the critical exponent and local similarity of this measure. 

KEY W O R D S :  Ising models; diamondlike hierarchical lattices; renormaliza- 
tion groups; Julia sets; maximal entropy measures; fractal structure. 

1. INTRODUCTION 

In this article we study the phase transition of the free energy f f  of Ising 
models. The phase transition is formulated as the nonanalyticity of physical 
quantities such as f f  as a function of some thermodynamic parameters 
such as temperature. So it is important to know where f f  is analytic and 
how ~- behaves near nonanalytic (critical) points, because it determines 
the type of the phase transition. 

Here we study the phase transition of an exactly solvable model, the 
Ising model on diamondlike hierarchical lattices. The diamondlike 
hierarchical lattices construct a sequence of graphs {F,} defined as follows. 
For a fixed integer b greater than one, we define two lattices Fa- -  
{B c, Va} (generator) and Fo = {B o, Vo} (initial lattice), where B ,  denotes 
the set of all bonds of F , ,  and V, denotes the set of all vertices of F , .  Fo 
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F, 

+ g> 
Fig. 1. Diamondlike hierarchical lattices for b = 3. 

consists of two vertices and one bond connecting them. To obtain F c, we 
insert b inner vertices between the two outer ones such that each bond 
connects an inner vertex and an outer one. When F,  is constructed, F,,+~ 
is obtained by replacing each element of B,, by F~. We call F,, = { B,,, V,, } 
diamondlike hierarchical lattices. {4"s) (See Fig. 1 for the case b = 3.) 

Bleher and Zalis t4) showed that the free energy on these lattices is 
discribed as 

where 

i f ( T ) =  J T ~ 1 
- ~ - ~  o ( - ~ l ~  a) 

to = exp (2~-~ 

t ,+l  = f(t , ,)  

4t b 

f ( t ) -  (1 + tb) - - - - - -~-  

The map f is called the Migdal-Kadanoff renormalization group 
transformation, which is a strong tool to investigate the asymptotic 
behavior of the free energy near the critical temperature. The advantage of 
this model is that the renormalization group transformation can be 
expressed explicitly and, moreover, it turns out to be a rational map. 

In the theory of statistical mechanics the following quantity which 
discribes the asymptotic behavior of the free energy is useful for a 
characterization of the phase transition. The critical exponent in the low- 
temperature region of order l ~ N is defined by 

~ltl _ lim log l~{~ 
'~ ,.',c - l o g  I t - t e l  

where tc is the critical temperature and ~1/) is t he / th  derivative of ~ .  
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Fig. 2. Julia set of f for b = 2. 

Lee and Yang (~) suggested an approach for the study of the singular- 
ities of the free energy. As is seen in the definition of free energy, the 
singularities of the free energy appear at zeros of the partition functions. 
But it is shown that each partition function is essentially a polynomial of 
t with positive coefficients. So the singularities never appear on the tem- 
perature interval [0, 1 ]. Lee and Yang proposed to extend the temperature 
t to the complex plane. They claimed that, letting n ~ ~ ,  the zeros in the 
complex plane approach some points of [0, 1-], which would represent the 
phase transition points. Following this idea, we consider ~ on C and f as 
a dynamical system on C. 

The theory of complex dynamical systems has been developed in 
recent years. One of the main objects of this theory is to study the invariant 
set called the Julia set J(f),  where the dynamics of f is "chaotic." 
Figure 2 shows the Julia set for b = 2. For the study of dynamics of f on 
J(f),  Brolin (9) introduced (for the polynomial case) a natural masure p 
called the maximal entropy measure, the support of which coincides with 
J(f). 

The purpose of this paper is to show a relationship between the two 
theories, statistical and complex dynamical systems. Historically, Derrida 
et ctl. (6) showed such a relationship for the first time. In ref. 6 it was shown 
that all the singularities of ,~ lie on the Julia set of the renormalization 
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group transformation. Our main results are more concerned with the quan- 
titative relationship between them. 

T h e o r e m  A. The free energy can be represented as the logarithmic 
potential of the maximal entropy measure/~, 

F(t)=b ~s log(t-z) d/~(z)+C 
( f l  

Using this representation, we can show the following. 

T h e o r e m  B. Let l be so large that (f'(tc))l>2b; then we have 

~") = / log 2b 

log f ' ( t c )  

Moreover, log2b/logf'(t~.) represents the local similarity near tc of the 
measure/+ on J(f). 

Thus, Theorem B says that the phase transition reflects the fractal 
structure of J(f). 

2. D Y N A M I C S  OF THE R E N O R M A L I Z A T I O N  G R O U P  

By the change of variable t=exp(-2J/bT),  the temperature interval 
[0, col is mapped onto [0, 1]. So, first we consider f as a dynamical 
system on [0, 1 ]. Then we can check that t = 0, 1 are superattractive fixed 
points of f and there exists a unique repelling fixed point t,. in (0, 1). 

From now on, we consider 

F ( t ) =  ~. 1 ,, ,,=o ( - - ~  g o f  (t), g(s) =log(1 + s  b) (2.1) 

instead of ~ ,  where f "  is the n-fold iterate of f 
As explained in the introduction, we consider f f  as a function on C 

and f as a dynamical system on (2. Let t2 o be the immediate attractive 
basin of 0. One can show that F is analytic on Y2 o and, moreover, c~f2 o 
forms a natural boundary of F. 

From the physical point of view we are interested in the behavior of 
F m (the lth derivative of F)  when t approaches c~f2 o. Bleher and Lyubich tS~ 
proved the following. 
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Theorem (Bleher-LyubichiS)). 

1. 

2. 
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Let b be greater than 2. Then: 

F~'-)(t) is not continuous up to 0~2 o. 

For  a lmost  all geodesics from the origin to a point z ~ O~o with 
respect to the harmonic  masure,  the critical exponents along the 
geodesics become 

~t21=l  log2  
log b 

Remark  that  we cannot  check whether this result is valid for ~I~ ~ or 
not. To calculate ~,~, we introduce a "natural"  measure /l on J(f). This 
measure was introduced by Brolin tg) for the polynomial  case. First it is not 
difficult to see that all the critical points of f are eventually mapped  to the 
superstable fixed points 0, 1. So the dynamics f on J(f)  is expanding. By 
the Bowen-Ruel le-Sinai  theorem, there exists a unique equilibrium state/~ 
satisfying the variational principle for potential  p-= 0, 

Py(O)=hu(f)= sup h,.(f) 
v ~ M ( f )  

where M(f)  denotes all f - invar iant  probabil i ty measures on J(f). Here 
Ps(O) is just the topological ent ropy (in this case, it is log 2b), so # is called 
the maximal  entropy measure. This measure is uniquely characterized by 
the following fact. 

Proposition (Frei re-Lopes-Mafi~,  (~~ Marl6, (~) Lyubich(~2)). For  
any Borel set A where f]A is injective, we have 

p(f(A)) = (2b).  #(A ) (2.2) 

Conversely, the maximal  ent ropy measure is the unique f - invar iant  prob-  
ability measure satisfying the above equation. 

3. R E P R E S E N T A T I O N  OF T H E  FREE E N E R G Y  F 

In this section we prove that the free energy F is represented as the 
logarithmic potential  of/~. First we need the following. 

L e m m a .  For  z ~ J(f)  and t ~ C \ J ( f ) ,  we have 

9h f ( t ) - z  1-[7=, ( t - z i )  
- - Z  - -  ( I  -{- / t , )2 

where zt (1 ~< i~< 2b) are the inverse images of z counting multiplicity. 
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Proof. For  z e J(f) ,  consider the following polynomial  of t of degree 2b: 

p(t)= (1 + tb) z - l . 4 t b  
Z 

Then, we can easily see that 

p(t) = 0 r z - - -  

Thus, one gets 

4t b 
(1 + tb)  2 -- f ( t )  "**" t = z~ 

2b 

p(t) = D I-I (t - z,) 
i = l  

Compar ing  the coefficient of t '-b, we get D = 1. This proves the lemma. II 

Using this lemma, we can show the following integral representat ion 
of the free energy. 

Proof of Theorem A. Let FL(t) be the r ight-hand side of (2.1), and 
let F2(t) be the integral representat ion of F(t). Remark  that  F1(0) = 0 and 
choose a constant  C so that Fdt )=  0. Consider a functional equat ion 

1 
E(t) = ~ Eo f ( t )  + g(t) (3.1) 

It is easy to see that  both  F~ and F2 satisfy (3.1). In fact, using the previous 
lemma and (2.2), one gets 

1 
2--b F,_ of( t)  

_ bl - 2 b  jiS~ l ~  dP(z)-2-bb lscy)l~ 

= l  fs logI--[~b=! !ty~,~') d#(t)+inn,(t  ) 
2 Cr ( l + t  I 

1 ~ I~ l o g ( t - z , ) d ~ ( z ) - ~ l o g ( l + t b ) 2 I s  d~(z)+i~n2(t) 
2 ~s~ ~s) i = l  

1 
Is log(t -- z) d#(f(z)) - log(1 + t b) + ir[n3(t) 

2 if) 

1.2b l s l og ( t_z )d# ( z )_ log ( l  +tb)+inn3(t) 
2 c) 

= F2(t ) -  g(t)+ il[n3(l ) 
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where hi(t)e N appear  by choosing branches of logarithms. Here 

i~n3(t) = 177, F2 o f ( t )  -- F2(t ) + g(t)  
zo 

is continuous,  and n3(t ) equals a constant.  Letting t = 0, we get n3( t )=  0. 
So we must  claim the uniqueness of the cont inuous solution E(t) of 

(3.1) satisfying E(0) = 0. Let G(t) = F2(t) - F~(t). Then G must  satisfy 

1 
2--b G of(t)  - G(t) = 0, G(0) = 0 (3.2) 

Assume that  G(to)#O for some toe f2  o. Then, using (3.2) inductively, we 
have 

Gof"(to)=(2b)".G(to) 

Because to e 12 o, f"(to) goes to 0 as n increases. Thus by the continuity of 
G, G of"(to) --* O. But (2b)".  G(to) ---, oo; this is a contradiction, n 

In fact, the same statement holds for any t in C \ J ( f )  because in the 
expanding case each componen t  of C \ J ( f )  is the preimage of Qo or 12~ 
(immediate attractive basin of 1). 

4. THE CRITICAL EXPONENT AT tc 

In this section we establish a relationship between the real critical 
exponent  and the maximal  ent ropy measure,  using the representat ion in 
Theorem A. A similar equat ion was already conjectured in ref. 8. 

Proof of Theorem B. Let r > 0  be small enough and take a disk 
B,(tc)= {zeCllz-t,.I ~<r}. Let J r = J ( f )  nB}t, .) ,  and take an arbi trary 
poe(O, t)c~Br(t,.). Define a sequence P,,~(P,,-t,  to) so that p,,_~ = f ( p , , ) .  
Let f - ~  be the inverse branch on Jr which fixes t,.. Consider the ratio 

F ' " ( p , , + , ) { f f  d~t(t)),~_c, fs d p ( t ) }  
F(tl(p,, ) - cl -,r ( t -  p,,+ ~ (f)\f-l(Jr) ( t-p, ,+ l) I 

(t - p,,)~ ~JIx~\J, (t - p,,)lj  

Let t' = f ( t ) .  Then, by the proposi t ion in Section 2, one gets 

f/ d#(t) 1 dl~(t') (4.2) f -,(j,) ( t -  p,,+ l) t -  2b ~s, [ f  -~(t ' )_ f - ~(p,,)]t 
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From the definition of the derivative we see that  

1 ( f'(t,.._....~)'~'_a,, + dr (f'(tc) ~,-i 
[f-a(t')-f-l(p,,)] t \t'-p,,] - t ' -p, ,  kt'-p,,/ +"" 

kl 
=(an+dr) (t,__p,,)l 

where a,, goes to zero as n tends to infinity and dr goes to zero as r tends 
to zero. Thus one gets 

Ff'(tc)l 1 dlt(t') (4"2)=m---~+kt(a"+dr) Ij,(t'-p,)' 

F o r  a fixed r > 0, the first terms in the numera to r  and the denomina to r  
of (4.1) go to infinity and the second ones are bounded  as n ~ oo. So the 
ratio (4.1) approaches  

[f'(tc)]'+d .k, 
2b 

as n tends to infinity. But, as r is arbi t rar i ly  chosen, we have 

l o g F ' " ( p , , + , ) =  ~ log([f'(t")]'+a'k)+logF'"(po) (4.3) 
k= t \ 2b 

where al, ~ 0. 
On the other  hand,  one can easily get 

nl 

log(tc-p,,+~)=log(tc-po)- ~. log[f'(tc)+b,] (4.4) 
k = l  

where b,, ~ 0 as n ~ oo. F r o m  Eqs. (4.3) and (4.4), ignoring constant  terms, 
one has 

log Fin(p , ,+  ,) log{[f'(t,)]'/Zb} 
, l i m  -log(t,.-p,+,) log f ' ( t c )  

[[f (t,.)] 
= lim log f ' ( t , . )  - l o g [  + a ~  

n ~  k = l  

_xo trI,,.ll_ '. t 
2b k= 1 

x {logf'(t~)'k~= log[f'(t,-)+b,,]}-' 
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= lim Z~-= 

= 0  

Finally we can get 

t {a~ log f '(t , .) - bk log[f'(t~)'/2b] } 

: I5-,5 

lim log FIl)(p,,) l log 2b 
. . . .  - log( t , . - -p , )  log f ' ( tc)  

Using the boundedness of F~)(t) on [Po,PJ],  it is not difficult to deduce 
our statement from this. �9 

R e m a r k  1. In the same way, we can show that the phase transition 
does not occur in the case of [ f ' ( t~ ) ] l<  2b. We do not know what happens 
when [ f ' ( t~)]  I equals 2b. 

5. LOCAL S IMILARITY OF p 

What does log 2b/logf'(tc) in Theorem B mean? First consider, for 
example, the Sierpifiski gasket (Fig. 3). When we enlarge the size of the 
Sierpifiski gasket twice, the "area" (rigorously speaking, the Hausdorff 
measure) increases three times. Thus, the similarity dimension of the 
Sierpifiski gasket equals log 3/log 2. This is the fundamental idea of the 
similarity dimension. 

In our case, if we linearize f near t,., Eq. (5.1) becomes 

/t(L(V)) ~ (2b). IL(V) 

where L ( t ) - f ' ( t , . ) ( t - t c ) + t c  is the linearization of f,  and V is a 
neighborhood of to. See Fig. 4, where we can see the fractal structure of 
J( f )  near 6, and convince ourselves that the above equation is quite 
precise. 

A 
A A A  

Fig. 3. Sierpifiski gasket. 
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i" 

x f'c~r 

Fig. 4. Enlargement of J(f) near t<. 

This situation is just the same as the case of the Sierpiflski gasket. 
That is, when we enlarge the size of V f'(tc) times, the measure 
/z(V) becomes about 2b times greater. So log 2b/logf'(tc) is supposed 
to represent the similarity of p near to. Thus, Theorem B states that 
the critical exponent reflects the local similarity of the maximal entropy 
measure. 

R e m a r k  2. The following remark is due to Dr. H. Kokubu on a 
connection between the results of Bleher and Lyubich and the author. If we 
rewrite the result of Bleher and Lyubich in our fashion, we get 

a(2) = 2 - log 2..__..~b 
log b 

So in both cases the critical exponent shows the following form: 

l -  topological entropy o f f  

Lyapunov exponent at r 
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